Раскрыт секрет повышения эффективности солнечных элементов

Исследователи обнаружили, что соединение ряда новых полупроводящих полимеров при контролируемой температуре является ключом к созданию высокоэффективных органических солнечных элементов, причем их серийное производство будет значительно дешевле по сравнению с существующим.

Выводы ученых из Университета штата Северная Каролина и Гонконгского университета науки и технологий также открывают пути для экспериментов с различными химическими смесями, которые составляют активные слои элемента.

Полимерные солнечные элементы являются тщательно контролируемыми смесями полимера- донора и фуллерена-акцептора. Элемент создается путем добавления растворителя к полимеру и фуллерену, до тех пор пока смесь не станет жидкой, и последующего покрытия его поверхности тонким слоем этой жидкости. После испарения растворителя тонкий слой отвердевает, материал-донор превращается в крошечные, высоко упорядоченные «комки», которые связаны с другими, неупорядоченными молекулами донора, а акцептор переплетается вокруг них. В настоящее время наиболее эффективные органические солнечные элементы изготавливаются с использованием только одного вида фуллерена.

Исследователи и раньше изучали морфологию солнечных батарей и обнаружили, что размер «комков» в донорном слое и взаимодействие между соседними молекулами внутри слоев были основными факторами эффективности солнечных элементов.

В статье, опубликованной в Nature Communications, ученые показали, что размер и соединение молекул в элементах сильно зависит от температуры. Они также показали, что рекордное значение КПД до 10,8% – в отличие от опубликованного в настоящее время значения 9,8% – достижимо с использованием множества разновидностей фуллеренов. Кроме того, эта эффективность может быть достигнута и в толстых слоях.

Команда ученых продемонстрировала 10%-ный КПД с 10 различными смесями, в том числе и в толстых пленках. Таким образом, эти солнечные элементы могут быть изготовлены с использованием существующих методов массового производства, таких как литье под давлением и рулонная технология аналогичная печати газет, а не более дорогих методов производства, используемых сейчас, которые необходимы для контроля толщины.

Ученые надеются, что их результаты позволят в дальнейшем экспериментировать с различными смесями полимеров и фуллеренов для повышения эффективности солнечных элементов, уменьшения затрат на их производство и в итоге приведет к экономически выгодному альтернативному источнику энергии.